
AFRL-IF-RS-TR-2000-18
Final Technical Report
March 2000

PRAGMATIC APPROACHES TO COMPOSITION
AND VERIFICATION OF ASSURED SOFTWARE

Syracuse University

Dan Zhou, Susan Older, and Shiu-Kai Chin

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

20000420 146
AIR FORCE RESEARCH LABORATORY

INFORMATION DIRECTORATE
ROME RESEARCH SITE

ROME, NEW YORK

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2000-18 has been reviewed and is approved for publication.

APPROVED: /(> 7- ■&?**&**-

ROY F. STRATTON
Project Engineer

FOR THE DIRECTOR:

NORTHRUP FOWLER
Technical Advisor
Information Technology Division

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed£y
your organization, please notify AFRL/IFTD, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

£äStS» S^SSÄ BTAÄI; « aoRm. ^ „ ,1. oirc. .1 N»*«« »> M* »pm«* M«. h** »wot» »■*■»*« am

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

MARCH 2000

3. REPORT TYPE AMD DATES COVERED

Final Feb98-Aug99
4. TITLE AND SUBTITLE
PRAGMATIC APPROACHES TO COMPOSITION AND VERIFICATION OF
ASSURED SOFTWARE

6. AUTHOR(S)

Dan Zhou, Susan Older, and Shiu-Kai Chin

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

CASE Center
Syracuse University
2-212 Center for Science and Technology
Syracuse NY 13244-4100

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/IFTD
525 Brooks Road
Rome NY 13441-4505

S. FUNDING NUMBERS

C - F30602-98-1-0063
PE- 61102F
PR- 2304
TA- FR
WU-P8

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-200O-18

11. SUPPLEMENTARY NOTES
Air Force Research Laboratory Project Engineer: Roy F. Stratton/IFTD/(315) 330-3004
Initiating Project Engineer: Major Mark J. Gerken
This effort was funded by Air Force Office of Scientific Research
12a. DISTRIBUTION AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

IZb. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
Mature engineering fields have methods of construction that have high likelihoods of success, and that guarantee the proper
functioning of systems, even within hostile environments. These methods relate behavior to structure and have underlying
notions of composition related to the implementation domain. Unfortunately, the construction of computer systems has not
yet reached the same level of maturity. While many mathematical theories have been developed, they have not yet been
brought into standard engineering practice.
Bridging the gap between theory and engineering practice requires sound and pragmatic principles of construction and
composition for software systems. One potentially promising and practical approach employs a combination of higher-order
logic, category theory, and algebraic specifications, as incorporated into the HOL theorem prover and the Specware system
for specification composition, refinement, and code synthesis.
This report presents a HOL formulation of the primary mathematical concepts underlying Specware, fully explicating fte
underlying principles of construction and composition. Furthermore, the purpose of computer-assisted reasoning is to allow
nonexperts in a given domain to nonetheless have confidence in their analysis. The HOL formulation describes the relevant
concepts in an executable form that nonexperts can use in the future to construct assured specifications and ultimately assured

code.

14. SUBJECT TERMS
Formal Methods, Higher Order Logic, Software, Algebraic Specifications, Verification,
Assured Software, Theorem Prover

15. NUMBER OF PAGES

32

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFTED

16. PRICE CODE

20. LIMITATION OF
ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
PmciM ky ANSI SU 238.18
Duprtuiiil talon ft« WHSmiOR Ott 8«

Table of Contents

1. Introduction 1
2. Category-Theory Basics 2
3. Signatures 4
3.1 Signatures as a HOL Type 5
3.2 Signatures as a Category 7
4. Algebras 8
4.1 Algebras as a HOL Type 9
4.2 E-Algebras as a Category 11
4.3 Algebraic Terms 13
5. Algebraic Specification 15
5.1 Specification as a HOL Type 16
5.2 Algebraic Specifications as a Category 17
6. Summary and Future 20
References 20

1 Introduction

Mature engineering fields have methods of construction that have a high likelihood of success
and that guarantee the proper functioning of systems, even within hostile environments.
These methods relate behavior to structure and have some underlying notion of composition
related to the implementation domain. Unfortunately, the construction of computer systems
has not yet reached the same level of maturity. While many mathematical theories have
been developed, they have not yet been brought into standard engineering practice.

Bridging this gap between theory and engineering practice requires sound and pragmatic
principles of construction and composition for software systems. Thus there are at least two
necessary tasks: identifying these principles, and investigating their suitability for problems
of real engineering interest. Our approach is to adopt existing theories and technology
where possible and to explore how they can be applied to nontrivial engineering applications.
In particular, we focus on higher-order logic, category theory, and algebraic specifications,
making significant use of the Higher Order Logic (HOL) theorem-prover [2j and Kestrel
Institute's SPECWARE specification composition and refinement system [3].

The method of design in both HOL and SPEC WARE is to construct small modules that
can be composed and verified. The well-documented advantages of modularity apply here,
as modular theories will be more reusable, and easier to build and verify. HOL theories
are organized hierarchically, so that new theories can be built by specialization of existing
theories. Design in SPECWARE is a semi-automatic process, in which the designer creates
specifications and chooses composition or refinement methods, which are performed auto-
matically by the system. Again, the creation of small specifications is the preferred method.
The universal composition method, based on pushouts and colimits in category theory, com-
poses specifications in a canonical way. The refinement methods can create either C++ or
LISP code.

Our overall approach is to build HOL theories that specify the desirable properties and
invariants that characterize the task, and use HOL's theorem-proving capability to verify the
soundness and completeness of the collection of theories. These theories are then transformed
into SPECWARE specifications, which are then refined into executable code. This approach
has been used to formally define and specified much of a secure electronic mail protocol, RFC
1421 - Privacy Enhanced Mail, [4]; these results have been reported elsewhere [9, 10, 8j.

HOL theories and SPECWARE specifications are both higher-order theories, so the map-
ping between them is fairly straightforward. However, there is a technical difficulty in the
refinement process, because there are many potential refinements of a SPECWARE specifica-
tion. Furthermore, not all refinements result in consistent specifications (i.e., specifications
which can be refined to meaningful and valid code). Ultimately, we would like to identify
explicit principles of construction that ensure the appropriate refinements and to explore the
applicability of these principles.

This report describes an important first step, namely the formulation in higher-order logic
of the primary concepts that underlie SPECWARE'S refinement framework. Throughout this
report, we provide both high-level, English-language explanations of the concepts, followed

by their implementation in the logic of the HOL theorem prover. Section 2 covers the most
basic definitions of category theory [6], the primary foundation for the rest of the mathemat-
ical framework. The next three sections describe the foundations of algebraic specifications
[!}. Section 3 introduces signatures, which are (roughly speaking) high-level abstractions
that identify the basic data types and the basic operators of a system. Algebras—which
provide interpretations for these signatures—appear in Section 4. To constrain the possible
interpretations of a signature, it is necessary to introduce further constraints, leading to
specifications; these are discussed in Section 5. Finally, Section 6 describes possible future
work that carries our approach further.

2 Category-Theory Basics

In this section, we give an overview of the most basic definitions of category theory (includ-
ing the notion of category itself) necessary for understanding the mathematical framework
underlying SPECWARE. Our aim here is to provide English-language explanations of the
concepts as well as their formulations in the higher-order logic of the HOL theorem prover
[2]. In fact, we shall follow this approach throughout this report.

The definitions in this section are not original, either in their English forms or in their
HOL forms. For example, Pierce provides a significantly more complete introduction to
category theory [6]. The HOL formulations we give in this section are due to Morris [5]
and will form the basis of our own formulations in subsequent sections; Agerholm provides a
similar embedding of category theory into HOL, choosing a different representation for the
categorical arrows [7].

A category C comprises a collection Oc of objects and a collection Ac of arrows satisfying
the properties detailed below. We often refer to the elements of Oc as C-objects and to the
elements of Ac as C-arrows.

• Each arrow is associated with two objects called its domain and codomain. When / is
an arrow whose domain and codomain are A and B, respectively, we write / : A-> B.

• For each C-object A, there is an identity arrow idA : A -> A.

• For each pair of C-arrows / : A -» B and g : B -* C, there is a composite arrow
go f : A-^C. The composition operator o satisfies the following properties:

Identity For any C-arrow / : A—* B,

f oidA = f and idB ° f = f

Associativity For any C-arrows / : A-+ B, g : B -» C, and h:C-*D,

ho(gof) = (hog)of

For example, the category Set is a category of sets (as objects) and total functions
between sets (as arrows). The identity arrow is the identity function, and the composition
in the category is the standard function composition.

In HOL, a category C can be represented as a four-tuple of functions with certain prop-
erties. A pre-category is a four-tuple

(0,A,Id,oo) :(a-> boot) x

(a x 7 x a —> bool) x

(a —> a x 7 x a) x
(aX7xa-»aX7Xa-»aX7Xo)

satisfying the following constraints:

• The function O picks out C-objects from pre-objects of HOL type a.

• The function A picks out C-arrows from pre-arrows of type a x 7 x a.

• The function Id constructs an identity arrow for each C-object.

• The function 00 constructs a composite arrow for two C-arrows / and g, provided that
they are composable (i.e., when the domain of g is the codomain of /).

As a technical aside, we point out the name 00 is used for the categorical composition
operator to avoid confusion with HOL's built-in composition operator o.

Each arrow in the category is represented by a triple (d, f, c) of type 0x7x0, where
d, f and c correspond to the arrow's domain, the arrow itself, and its codomain, respectively.
The accessor functions dorn and cod return the domain and codomain of a given arrow. The
property composable asserts that two arrows of a given category are composable, and the
property cpsl asserts that two triples are arrows of a certain category and that they are
composable. These properties are summarized as follows:

dom \~def Vd m c. dorn (d,m,c) = d
cod \~def Vd m c. cod (d,m,c) = c
composable hde/ Vf g. composable f g = (dorn f = cod g)
cpsl \-def VAf g. cpsl Afg = AfAAgA composable f g

In Morris's treatment of category theory, whenever we are concerned only with a func-
tion's behavior over a certain domain, the behavior of the function outside the domain is
forced to be the value ARB. The value ARB is based on the Hubert operator e, and
ARB of any type r is the term e : T.T. TWO definitions explore this idea. The predicate
isRestr checks that the value of function / outside the truth-set of predicate P is ARB, and
isRestr2 checks that the value of a curried function of two arguments g outside the truth-set
of predicate Q is ARB.

ARB = ex:*. T
isRestr hde/ VP f. isRestr P f = f = (Ax ::P. f x)
isRestr2 \-def VQ g. isRestr2 Q g = g = (Ax. Ay ::(q x). g x y)

Using these definitions, the predicate isCat (given in Figure 1) checks whether a given
four-tuple is indeed a category. It is straightforward to see that this HOL formulation
captures all of the important aspects of the definition of category.

isCat

hdef VO A id oo.
isCat (0,A,id,oo) =

(Vf ::A. 0 (dom f) A 0 (cod f)) A

isRestr2 (cpsl A) oo A
(Vf g ::A. composable f g 3 A (oo f g)) A

(Vf g ::A.
composable f g D
(dorn (oo f g) = dorn g) A (cod (oo f g) = cod f)) A

(Vf g h ::A.
composable f g A composable g h D
(oo (oo f g) h = oo f (oo g h))) A

isRestr 0 id A
(Va
(Va
(Va

0. A (id a)) A
0. (dorn (id a) = a) A (cod (id a) = a)) A
0.

(Vf ::A. (dom f = a) D (oo f (id a) = f)) A
(Vg : :A. (cod g = a) D (oo (id a) g = g)))

Figure 1: The predicate isCat.

Any four-tuple that satisfies isCat defines a category. A compound type (a, i)cat is
defined using a type-definition construct of HOL, where a is the type of pre-objects and
(a x 7 x a) is the type of pre-arrows.

cat_TY_DEF hde/ 3rep. TYPE.DEFINITION isCat rep

3 Signatures

Having provided a HOL formulation of categories in the last section, we now turn our
attention to some particular categories of importance to the development of assured code via
algebraic specifications. In this section, we consider signatures, which introduce a collection
of data types and operations on those types. Signatures are purely syntactic entities and
have no meanings in and of themselves; in Section 4, we will examine algebras, which provide
meanings for these signatures.

A signature £ is a pair (S, ti), where S is a set of sorts (intuitively, base types) and Q is a
set of function symbols (also called operators). Each function symbol p in Q. has an associated
type (si x s2 x s3 x • • • x sn) —* s0 for some n > 0, with each Sj (for i € {0,1, • • • , n}) a
member of S; such an operator is said to have arity n. A function symbol with type -* s is
called a constant and is said to have type s.

Ei/ : Sbp (sorts) :
S« (sorts>> : boolPair

color Qbp (function symbols) :
Qtl (function symbols) : TT _ booipair

9reen : color TF : boolPair
yellow : color pT . 6oo/Pflir

red : color FF : boolPair
changeColor : color -> color ^ . ^^ ^ WPflfr

Figure 2: Sample signatures.

For example, Figure 2 contains two signatures, E« (for traffic lights) and Efcp (for boolean
pairs). The traffic-light signature E« has a sort co/or to represent the colors of a traffic light,
and three operators (i.e., green, red, and yellow) of type color to represent the three possible
colors of a traffic light. It also has an operator changeColor that changes the color of the
traffic light. (To be pedantic here, our intention is that changeColor will eventually have a
certain behavior. However, because we are currently at a purely syntactic level, we are only
indicating that there will be some operator with this name.)

Likewise, the boolean-pair has a sort boolPair to represent boolean pairs and four op-
erators (i.e., TT, TF, FT, FF) of type boolPair intended to represent the four possible
combinations for a boolean pair. It also has an operator cycle intended to cycle through the
various boolean pairs in a particular sequence.

3.1 Signatures as a HOL Type
We define sorts and function symbols to be of base types sort and operator in HOL. The use
of new base types gives us as much generality as with a type variable, because a signature
is just a set of symbols with special properties.

For a signature E = (S, ft), S is represented in HOL as a set whose elements are of type
sort. Based on the observation that every function symbol has an input type and an output
type, Ü is represented in HOL as a set of triples (p, si, s) : operator x sort list x sort, where p
is a function symbol, si is the type of input argument to p, and s is the return type of p. The
function symbol's input type is a list of sorts. A constant c in fi with type s is represented
by a triple (c,[],s), where [] is HOL's representation of the empty list. Using triples to
represent the elements of the set Cl allows us to overload functions symbols. Elements (which

we shall call function names) in Q can be treated as primitives. We define accent Functions

rho : operator x sort list x sort —> operator,

arg : operator x sort Hsi x sort —» sort Zzsi,

ret: operator x sort Zist x sort —> sort

to obtain the function symbol, the argument type, and the return type of a given function
name:

rho \~def Vop v s. rho (op,v,s) = op
arg I-je/ Vop v s. arg (op.v.s) = v
ret Hde/ Vop v s. ret (op,v,s) = s

Because we use sets extensively, a predicate inSet is defined to test the membership of a
set.

inSet \-def Vs e. inSet s e = e IN s

A pair (S, Q) represents a signature if the input and output types of all function-names
in Q, are restricted to the sorts in S. The predicate

rhoVSRes : sort set —» operator x sort list x sort —> bool

tests whether the input and output types of a function-name (op, si, s) are restricted to the
sorts in S. The predicate isSig : sort set x (operator x sort list x sort)set —> bool then
defines the subset of pairs that are valid representations of signatures.

rhoVSRes
hde/ VSs op si s. rhoVSRes Ss (op.sl.s) = EVERY (inSet Ss) si A s IN Ss

isSig
\-def VSs Omega. isSig (Ss,Omega) = (Vr ::(inSet Omega). rhoVSRes Ss r)

Finally, we define a new type sig for signatures using HOL's type-definition construct.
Accessor functions are defined in HOL to pick out from a signature its set of sorts S and its set
of function names Q. We also define tester functions that, given a signature, check whether
a sort is in the set of sorts and whether a function-name is in the set of function-names ft:

sig_TY_DEF I-de/ 3rep. TYPE.DEFINITION isSig rep
sortsSig I-de/ Vx. sortsSig x = FST (REP.sig x)
omegaSig h-def Vx. omegaSig x = SND (REP_sig x)
inSorts \~def Vx. inSorts x = inSet (sortsSig x)
inOmega \~def Vx. inOmega x = inSet (omegaSig x)

3.2 Signatures as a Category

A signature morphism / between two signatures £ = (S, ft) and £' = (S",ft') is a pair
of functions fs : S -> 5' and /0 : ft -* ft' such that the mapping /0 between function
symbols respects the mapping fs between sorts. That is, if a function-symbol p € ft has
type (si x 52 x S3 x ••• x sn) -* s0, then f0{p) is a function symbol of ft' having type

(/s(si) x fs(s2) x • • • x f8(sn)) -> fs(so).
For example, recall the signatures of Figure 2. If the sort mapping fs : Su -» Sbp maps

the traffic light's color sort to the boolean pair's boolPair sort, then f0 : ft« -> ftbp should
map green to a function symbol in ft6p that has type boolPair. Thus /0 can map green to
any of the four operators of type boolPair (TT, TF, FT, FF) in ft^, but it cannot map
green to cycle.

We can now define the category Sig whose objects are signatures and whose arrows
are signature morphisms. In HOL, we represent an arrow in the category Sig by a triple
(d, (fs, fo), c) having the following type:

sig x

((sort —* sort) x
((operator x sort list x sort) -»■ (operator x sort list x sort))) x

sig

In this representation, d and c are the signatures that serve as domain and codomain of the
arrow, and (fs, f0) is the signature morphism itself.

We first define two accessor functions that retrieve the sort-mapping and operator-
mapping components of an arrow.

sigMFs.DEF hde/ Vd fs fo c. sigMFs (d,(fs,fo),c) = fs
sigMFo_DEF \-def Vd is fo c. sigMFo (d,(fs,fo),c) = fo

We then define a predicate sig A, which identifies the signature morphisms from pre-arrow
triples (d, (fs, fo), c). In particular, it ensures that fs and fo are indeed functions from the
sorts and operators of d to the sorts and operators of c; it also checks that the funciton-name
mapping fo respects the sort mapping fs.

sigA.DEF
I-de/ sigA =

(let SA m =
isRestr (inSorts (dom m)) (sigMFs m) A
isRestr (inOmega (dom m)) (sigMFo m) A
(Vsn ::(inSorts (dom m)). inSorts (cod m) (sigMFs m sn)) A
(Vrl :: (inOmega (dom m)).

let (op.v.s) = rl and r2 = sigMFo m rl
in
(r2 = (rho r2,MAP (sigMFs m) v,sigMFs m s)) A
inOmega (cod m) r2)

in
SA)

The identity arrow for a signature (5, Q) is a pair of identity functions ids : S -> S and
idn : fi —> ft. In HOL it is defined as a predicate sigld, as follows.

sigld
hdef sigld = (As. (s, ((As ::(inSorts s). s), (Ar :: (inOmega s). r)), s))

The composition of two signature morphisms m and n is defined compentwise, so that
their sort-mapping functions are composed and their operator-mapping functions are com-
posed. The HOL definition of this composition operation sigOo is as follows.

sigOo
I-de/ sigOo =

(Am.
An :: (cpsl sigA m).

dom n,
((Ax ::(inSorts (dorn n)). (sigMFs m o sigMFs n) x),

(Ax : : (inOmega (dom n)). (sigMFo m o sigMFo n) x)),
cod m)

These definitions together allow us to prove that the four-tuple (Xs.T, sigA, sigld, sigOo)
is indeed a category (which we call sigCat), as evidenced by the following HOL theorem.

sigCat_rep_IS_CAT
[oracles: #] [axioms:] [] h isCat ((As. T), sigA, sigld, sigOo)

sigCat Y-def sigCat = ABS.cat ((As. T), sigA, sigld, sigOo)

4 Algebras
Algebras give meaning to signatures. For any given signature, there are many potential
algebras, each providing a different interpretation of the sorts and function symbols. For
a fixed signature E = (S, Q), we can talk about its collection of models; these models are
called E-algebras,

Each E-algebra is a pair (A,I), where A = {As | s € S} is an 5-indexed set of carriers,
and J = {Ip | p G f2} is an ^-indexed set of functions. Furthermore, we require the
functions Ip to respect the typings of each p: if the function symbol p is assigned the type
Si x • • • x sn -* s, then Ip must be a function of type (ASl xAS2---x ASn) -»• As. Intuitively,
each carrier As provides a set of values corresponding to the sort s. In turn, each function Ip

provides an interpretation of the function symbol p as a function over the appropriate sets
of data values.

For example, recall the boolean-pair signature Sftp from Figure 2. One possible E^-

algebra is {{AbooiPair}, {hr, ITF, IFT, IFF, I cycle}), where:

AboolPair = {(T,T), (T, F), (F,T), (F, F)}

/Tr = (T,r)
7TF = (T,F)

iFT = (^)
/FF = (F, F)

1cycle — A(X '. AboolPair)-

ifrr = (F,F) then (F,T)

else if x = (F, T) then (T,F)

else if x=CT,F) then (T,T)

else (F, F)

Note that while this algebra reflects our probable intended interpretation of the operators
TT, TF, FT, and FF, this interpretation is not the only one. For example, consider the
(rather artificial) algebra ({BbooiPair}, { JTT, JTF, JFT, JFF, Jcyde}), where BtodPair = N (the
set of natural numbers) and the Jp functions are defined as follows:

JTT
== 0

JTF
= 5

JFT
= 5

JFF — 13
Jcycle = A(x : N). if x < 2 then 0 else 3

This algebra meets all the necessary requirements: each constant operator of sort boolPair
is mapped to a value from the set BbooiPair, and the operator cycle is mapped to a function
of type Bb00lPair -» Bbooipair. In particular, it is not necessary for the values of BbooiPair to
resemble boolean pairs or to even be in one-to-one correpsondence with the constants of the
sort boolPair. Similarly, it is okay for different constants to be mapped to the same value,
and the function J^ae can return values that are not necessarily assigned to a particular
constant.

In Section 5, we will discuss how signatures can be augmented with additional formulas
or equations that rule out certain undesirable algebras (such as this oner perhaps). For now,
however, we focus on the HOL implementation of algebras.

4.1 Algebras as a HOL Type
We introduce a new base-type value in HOL to represent the values that are in a carrier set.
In HOL, the set of sort-indexed carrier sets of a S-algebra is represented as a set of pairs
(v, s) : value x sort, where v is a value and s is the type of the value. This representation

allows us to overload symbols for values. Similarly, the set of functions of a E-algebra is
represented as a set of functions, each taking a list of values to a value.

We use triples of form (E, A, I) to represent E-algebras in HOL: in each case, A is a
HOL function that constructs a carrier set from the sort of the signature E, and J is a HOL
function that maps a function-name to a function. Thus A and / have the following types
in HOL:

A : sort —* value set

I: (operator x sort list x sort) —»• (value list —»• value)

We call A the carrier-sets assignment function and I the function-name assignment function.
The HOL function carrierVals computes the carrier set of a E-algebra, given the carrier-

sets assignment function A.

carrierVals
\-def VA Ss. carrierVals A Ss = {(s, v) | inSet Ss s A inSet (A s) v}

Likewise, the function setOfVLists constructs a set from the carrier-sets assignment func-
tion A and a sort list si such that every element of the set is a value list, and each value in
the list has the type defined by the corresponding element in the sort list si.

setOfVLists
\-def VA v. setOfVLists A v = {xv] AND_EL (MAP2 inSet (MAP A v) xv)}

A triple (E, A, I) is a E-algebra if the mapping from function-names to functions is
consistent with the mapping from sorts to carrier sets. In HOL, this property is defined as
a predicate isAlg:

isAlg
\-def Vsigma A Is.

isAlg (sigma,A,Is) =
isRestr (inSorts sigma) A A
isRestr (inOmega sigma) Is A
(Vrvs : :(inOmega sigma).

isRestr (inSet (setOfVLists A (arg rvs))) (Is rvs) A
(Vxv ::(inSet (setOfVLists A (arg rvs))).

inSet (A (ret rvs)) (Is rvs xv)))

This predicate isAlg identifies the subset of triples that are valid representations of
algebras. Using HOL's type-definition construct with this predicate, we define a new type
alg for algebras:

alg_TY_DEF hdef 3rep. TYPE.DEFINITION isAlg rep
alg.ISO.DEF
\-def (Va. ABS_alg (REP.alg a) = a) A

(Vr. isAlg r = REP_alg (ABS_alg r) = r)

10

Finally, we define accessor functions sigAlg, carrierAlg, and funsAlg that extract the sig-
nature, the carrier sets, and the interpretation of function names from an algebra.

sigAlg \-def Vx. sigAlg x = FST (REP_alg x)
carrierAlg hde/ Vx. carrierAlg x = FST (SND (REP_alg x))
funs Alg \-def Vx. funsAlg x = SND (SND (REP_alg x))

4.2 £-Algebras as a Category

A E-homomorphism between two E-algebras (.4, /) and (.4', /') is a collection of functions
hs : As —> A's such that, for a E operator p with type Sj. x • • • x sn —> s,

hs(Ip(vuv2, ...,vn)) = I'p{hSl v1,hS2 v2,... ,hSn vn).

Intuitively, this equation says that E-homomorphisms preserve the algebraic structure: ap-
plying the /-interpretation of the operator p to appropriate values V\,... ,vn and then trans-
lating that result to a value in A's yields an equivalent result as first translating each of the
values Vi to elements of A's. and then applying the /'-interpretation of p to those values.

For any signature E, AlgE is the category whose objects are E-algebras and whose arrows
are E-homomorphisms. The identity arrows are simply those homomorphisms for which each
hs is the identity function, and composition is standard function composition (it is easy to
verify that the composition of two homomorphisms is indeed a homomorphism).

In HOL, we define the category AlgE in such way that the signature E is taken as a
parameter. The predicate isSigmaAlg selects E-algebras from the set of all algebras.

isSigmaAlg
\~def Vsigma. isSigmaAlg sigma = (let P a = (sigAlg a = sigma) in P)

In HOL, an arrow in the category AlgE is represented as a triple

(m, h, n) : alg x (sort —> value —* value) x alg,

where m and n are the domain and codomain E-algebras of the arrow and h : sort —*
value —+ value is a function that maps the elements of ra's carrier sets to elements of the
corresponding carrier sets of n. The predicate algHom defines a homomorphism between
two algebras that have the same signature. The predicate sigmaAlgA picks out Algs arrows
from pre-arrows with the help of algHom.

11

algHom.DEF
\-def algHom =

(let aA (m,h,n) =
(let values =

carrierVals (carrierAlg m) (sortsSig (sigAlg m))

in
(sigAlg m = sigAlg n) A
isRestr (inSet (sortsSig (sigAlg m))) h A
(Vs ::(inSet (sortsSig (sigAlg m))).

isRestr (inSet (carrierAlg m s)) (h s) A
(Vrvs :: (inOmega (sigAlg m)).

Vxv ::(inSet (setOfVLists (carrierAlg m) (arg rvs))).
h (ret rvs) (funsAlg m rvs xv) =
funsAlg n rvs (MAP2 h (arg rvs) xv))))

in
aA)

sigmaAlgA
I-de/ Vsigma.

sigmaAlgA sigma =
(let AA (m.h.n) = isSigmaAlg sigma m A algHom (m,h,n) in AA)

The identity arrow in the category AlgE is the function (As./ : value -> value). The
composition of arrows (a, /, b) and (6, g, c) is defined to be (a, Xs.({g s) o (/ s)), c).

The four-tuple algCat that represents the Algs-category is defined as follows.

sigmaAlgO
\-def Vsigma. sigmaAlgO sigma = (let AO = isSigmaAlg sigma in AO)

sigmaAlgld

\-def Vsigma.
sigmaAlgld sigma =
(Aa ::(sigmaAlgO sigma). a, (As ::(inSorts sigma). I), a)

sigmaAlgOo
I-de/ Vsigma.

sigmaAlgOo sigma =
(Am.

An ::(cpsl (sigmaAlgA sigma) m).
dorn n, (As : :(inSorts sigma). mid m s o mid n s), cod m)

algCat
\-def Vsigma.

algCat sigma =
(sigmaAlgO sigma,
sigmaAlgA sigma,
sigmaAlgld sigma,
sigmaAlgOo sigma)

Proving that algCat represents a category amounts to proving the following goal:

val goal = ([] , --' isCat (algCat sigma) ' —) ; 1

12

Due to time limitations, we have not yet performed this proof within HOL. However, based
on our prior experience with HOL and our knowledge that the underlying category theory
is correct, we are confident that this goal could be proven with HOL without significant
difficulties.

4.3 Algebraic Terms

Algebraic specifications describe abstract data types (ADTs) by augmenting signatures with
descriptions of the characteristic properties of the ADTs. These properties of ADTs can be
expressed as formulas (such as equations) on the terms of S-algebras.

To define the algebraic terms associated with a given signature E = (S, Q), we begin
with an infinite set V of symbols called variables assumed to be distinct from all the sorts
and operator symbols in £. A sort assignment T is a finite set of pairs (x, s), where x £ V
is a variable and s € S is a sort; F must be consistent, in that it may associate at most
one sort with any particular variable. We then can define by mutual induction a family of
sets Terms(£,r) = {Termss(E,T) | s e S} as follows, where each set Termss(E,r) is the
collection of Y,-terms of sort s under the sort assignment T:

• If (x, s) is in T, then x is in Termss(T,, T).

• If, for each i G {1,2, • • • , n}, U is a term in TermsSi(E, T), and if p is a function symbol
of type (si x s2 x • • • x sn —► s), then p(tx, i2, • • • , tn) is a term in the set Termss(L, T).

A E-equation with respect to the sort assignment T is a pair of terms (ti,t2) such that ti
and t2 are both elements of Terrass(E, T), for some sort s. Such an equation is conventionally
written as: t\ =s ^[L].

To define the algebraic terms of a signature E in HOL, we first introduce a new base
type variable to represent our variables. We then represent a sort assignment as a set of
pairs (x, s) : variable x sort, where a; is a variable and s € S is its corresponding sort. The
HOL predicate gammaRes identifies those sets that are valid sort assignments under the
signature E = (5, Q,).

gamm aRes

•"de/ Vsigma g
gammaRes

amma.
sigma gamma =

(V(v,s) : :(inSet gamma). inSorts sigma s)

Note that this implementation does not need to verify that each sort assignment T is consis-
tent, because each variable v will always appear along with its sort in a pair (v, s). Intuitively,
each pair (v, s) can be viewed as representing a variable vs of sort s, and hence (for example)
the pairs (x, int) and (x, bool) represent distinct variables xint and x^i-

We first define a recursive HOL-type ppreT, which provides an abstract-syntax repre-
sentation for E-terms and their associated types. Strictly speaking, this new type is slightly
more general than our desired E-terms, as it will also contain items that technically are only

13

portions of valid E-terms. For example, if an operator p has type (sx x s2 x • • • x sn) -» s
and ti is a term of type Sl, then p h is not itself a E term. However, it is convenient to
allow such partial terms in our abstract syntax, and we shall be able to easily pick out the
valid terms from the set of ppreT values.

The recursive type ppreT has the following three constructors:

Leafv : (variable x sort) -* ppreT

Leafo : (operator x sort list x sort) -> ppreT

Comb : ppreT -»ppreT -> ppreT

A value of form Leafv(x, s) represents a variable x of sort s. A value of form Leafo(op, [su s2,... , sn], s)
represents an operator op of type (si x s2 x • • • x sn) -+ s. Finally, a value of Comb h t2

corresponds to a partially instantiated term.
We define a HOL predicate isPreSigmaTerm that determines the appropriate type for

each element of ppreT as follows (HD and TL return the head and tail of a list):

isPreSigmaTerm sigma gamma (\\,s)(Leafv (x,s))
inSet gamma (x, s)gammaRes sigma gamma

inOmega sigma f
isPreSigmaTerm sigma gamma (sl, s)(Leafo (op, sl, s)) gammaRes sigma gamma

isPreSigmaTerm sigma gamma (ui,si)*i,
isPreSigmaTerm sigma gamma ([], s2)t2 gammaRes sigma gamma

isPreSigmaTerm sigma gamma (TL vi,Si)(Comb tx t2) s2 = HD v\

A E-term of type s under T is simply an element of ppreT whose associated type is ([], s).
In HOL, these terms can be represented as four-tuples (E, I\ t, s) : sig x (variable x sort)set x
ppreT x sort. The predicate isSigmaTerm identifies those four-tuples that are valid repre-
sentations of E-terms. Using HOL's type-definition construct, we can also introduce a new

HOL type sigmaTm.

sigmaTm_TY_DEF
[oracles: #] [axioms:] 0 ^def 3rep. TYPE.DEFINITION isSigmaTerm rep
sigmaTm_ISO_DEF
[oracles: #] [axioms:] 0
hde/ (Va. ABS_sigmaTm (REP_sigmaTm a) = a) A

(Vr. isSigmaTerm r = REP.sigmaTm (ABS.sigmaTm r) = r)

We define accessor functions sigSigmaTm, gammaSigmaTm, tmSigmaTm, and tySigmaTm
that extract the signature, the variable assignment, the term itself, and its type from a E-

term.

14

sigSigmaTm \-def Vx. sigSigmaTm x = FST (REP_sigmaTm x)
gammaSigmaTm \-def Vx. gammaSigmaTm x = FST (SND (REP_sigmaTm x))
tmSigmaTm hde/ Vx. tmSigmaTm x = FST (SND (SND (REP.sigmaTm x)))
tySigmaTm \-def Vx. tySigmaTm x = SND (SND (SND (REP_sigmaTm x)))

A E-equation is a pair of E terms (tx, t2) : sigmaTm x sigmaTm where tx and t2 are of
the same type. The predicate isSigmaEq identifies those pairs of E-terms that satisfy this
constraint, and we use this predicate to define a HOL type sigmaEq for E-equations.

isSigmaEq
\-def Vtl t2.

isSigmaEq (tl,t2) -
(sigSigmaTm tl = sigSigmaTm t2) A
(gammaSigmaTm tl = gammaSigmaTm t2) A
(tySigmaTm tl = tySigmaTm t2)

sigmaEq_TY_DEF \-def 3rep. TYPE_DEFINITION isSigmaEq rep
sigmaEq_ISO_DEF
\-def (Va. ABS.sigmaEq (REP.sigmaEq a) = a) A

(Vr. isSigmaEq r = REP_sigmaEq (ABS.sigmaEq r) = r)

We introduce accessor functions leftTermEq and rightTermEq that extract the left and
right terms from a E-equation. Likewise, we introduce functions sigSigmaEq, garnmaSigmaEq,
ItmSigmaEq, rtmSigmaEq, and tySigmaEq that obtain the signature, the variable assign-
ment, the left term, the right term, and the terms' type from an arbitrary E-equation.

leftTermEq \-def Vx. leftTermEq x = FST (REP.sigmaEq x)
rigthTermEq \-def Vx. rightTermEq x = SND (REP.sigmaEq x)
sigSigmaEq \-def Vx. sigSigmaEq x = sigSigmaTm (leftTermEq x)
garnmaSigmaEq \-def Vx. garnmaSigmaEq x = gammaSigmaTm (leftTermEq x)
ItmSigmaEq \-def Vx. ItmSigmaEq x = tmSigmaTm (leftTermEq x)
rtmSigmaEq \-def Vx. rtmSigmaEq x = tmSigmaTm (rightTermEq x)
tySigmaEq \-dej Vx. tySigmaEq x = tySigmaTm (leftTermEq x)

5 Algebraic Specifications

As we have discussed in previous sections, every signature has a collection of models, not
all of which necessarily capture our intentions. To reduce this collection to those models
that do capture the intended meaning, it is necessary to add constraints to the signatures
that limit the potential models. These constraints can be represented as equations that are
added to a given signature; the result is an algebraic specification.

An algebraic specification is a pair (E, E), where E is a signature and E is a set of E-
formulas that serves as axioms of the specification. Algebraic specifications can be used to
specify computer systems, where E describes the interface of the system and E is the desired
system properties.

For example, we can define TL-spec — (Y,ti,Eti) as a specification for the traffic light
and BP-spec = (E^,!?^) as a specification for the boolean pair, where E*i and E&p are the

15

signatures described on page 6. With E«, the specification TL-spec states that a traffic light
has exactly one of the three distinct colors. With Ebp, the specification BP-spec states that
a boolean pair has exactly one of the four distinct values.

Etl:
color-distinct: (green ^ yellow) A (yellow ^ red) A (red ^ green)

color-cases: for each color x, (x = green) V (x = yellow) V (x = red)

Ebp :
boolPair- distinct:

(TT ± TF) A (TT ± FT) A (TT ? FF) A (TF ± FT) A (TF ? FF) A (FT ± FF)

boolPair-cases: for each boolPair y, (y = TT) V (y = TF) V (y = FT) V (y = FF)

A E-algebra (A, I) is a model of a specification (E,£) provided that (A, I) satisfies all
the formulas in E. That is, for every possible variable assignment, all the E-formulas in E
hold with respect to the carrier-set assignment A and the function-symbol assignments /.

5.1 Specification as a HOL Type
In HOL, we represent specifications by triples (E, T, E) of type sig x (variable x sort) set x
sigmaEq set, so that E is a signature, T is a variable assignment, and E is a set of In-

equations.
The predicate isSpec identifies the subset of these triples that correspond to valid alge-

braic specifications.

isSpec
hdef Vsigma gamma E.

isSpec (sigma,gamma,E) =
(VsigEq ::(inSet E).

(sigSigmaEq sigEq = sigma) A (gammaSigmaEq sigEq = gamma))

Using this predicate along with HOL's type-definition construct, we can then define
algebraic specifications as a new HOL type spec.

spec_TY_DEF \-de/ 3rep. TYPE.DEFINITION isSpec rep
spec_ISO_DEF
\-def (Va. ABS.spec (REP.spec a) = a) A

(Vr. isSpec r = REP_spec (ABS.spec r) = r)

As before, we also define accessor functions sigSpec, gammaSpec, and ESpec that ex-
tract the signature, the variable assignment, and the set of E-equations from a specification.

sigSpec \-def Vx. sigSpec x = FST (REP.spec x)
gammaSpec \-def Vx. gammaSpec x = FST (SND (REP.spec x))
ESpec I-de/ Vx. ESpec x = SND (SND (REP_spec x)) ,

16

5.2 Algebraic Specifications as a Category

The category Spec is the category of algebraic specifications: its objects are specifications,
and its arrows are specification morphisms. A specification morphism / between two spec-
ifications (£, E) and (E;, E) is a signature morphism between E and E' that preserves
theorems: / takes any axiom (i.e., E-formula) in E either to an axiom in E' or to a theorem
deducible from the axioms in E.

We represent a specification morphism in HOL as a triple of functions fs : Si —*■ S2,
f0 : fti —► ft2 and /„ : Ti -» T2. The pair (fs, f0) is a signature morphism, and fv provides
a mapping between the two variable assignments of the specifications. This mapping fv is
necessary at this stage to avoid the complex a-conversion of terms.

An arrow in the category Spec is therefore represented as a triple (d, (fs, fo, fv),c) with
the following type:

spec x

((sort —* sort) x
((operator x sort list x sort) —*■ (operator x sort list x sort))

((variable x sort) —> (variable x sort))) x

spec

As before, we define accessor functions that retrieve the various components of a specification
arrow:

specMFs.DEF \-def Vd fs fo fv c. specMFs (d,(fs,fo,fv),c) = fs
specMFo.DEF hdef Vd fs fo fv c. specMFo (d,(fs,fo,fv),c) = fo
specMFv.DEF hdef Vd fs fo fv c. specMFv (d,(fs,fo,fv),c) = fv

The signature arrow (/s, f0) : (S, Q) -> (S', ft') and the variable-assignment mapping
fv : T —> r" determine the transformation from the E-equations of one specification to the
E-equations of another specification. The terms of E (under T) can be transformed to terms
of £' (under T') in the obvious inductive fashion:

• Each (sub)term of form (Leafv (x, s)) is transformed to the term Leafv (fv (x,s)).

• Each (sub)term of form (Leafo (op, si, s)) is transformed to the term Leafo (fo (op, si, s)).

• Each (sub)term of form (Comb tl t2) is transformed by transforming its components
t\ and tl.

The recursive function iransPPT is formalized in HOL as follows:

transPPT
[oracles: #] [axioms:] []
I"def (Vfo fv x. transPPT fo fv (Leafv x) = Leafv (fv x)) A

(Vfo fv op. transPPT fo fv (Leafo op) = Leafo (fo op)) A
(Vfo fv ppt2 pptl.
transPPT fo fv (Comb pptl ppt2) =
Comb (transPPT fo fv pptl) (transPPT fo fv ppt2))

17

The E'-types of the newly constructed terms are obtained by applying the mapping fs

to the original E-type of a term, so that each E-term t of type s is transformed to term t'

with type (/s s):

transTerm
I-de/ Vfs fo fv sigma2 gamma2 t.

transTerm fs fo fv sigma2 gamma2 t =

ABS.sigmaTm
(sigma2,gamma2,traiisPPT fo fv (tmSigmaTm t),fs (tySigmaTm t))

Finally, these transformations can be applied componentwise to transform a E-equation
to a corresponding E'-equation, as follows:

transEq
\-def Vfs fo fv sigma2 gamma2 eq.

transEq fs fo fv sigma2 gamma2 eq =

ABS_sigmaEq

(ABS.sigmaTm

(sigma2,

gamma2,
transPPT fo fv (ItmSigmaEq eq),

fs (tySigmaEq eq)),

ABS_sigmaTm

(sigma2,
gamma2,
transPPT fo fv (rtmSigmaEq eq),

fs (tySigmaEq eq)))

Because specification morphisms must preserve theorems, we need a way to verify that
each E-equation is translated to an equation derivable from the E'-equations. Ideally, we
would define a function thmsDerivable : sigmaEq set -» sigmaEq set that constructs the
set of all theorems derivable from a given set of axioms. We could then define a specification
arrow in HOL as follows, where the predicate inGammaSpec defines the elements that are
in the variable-assignment set T of a specification and the predicate specA picks out the
specification arrows from pre-arrow triples:

inGammaSpec t-de/ Vsp. inGammaSpec sp = inSet (gammaSpec sp)
specA_DEF
I-de/ specA =

(let SA (d,(fs,fo,fv),c) =
sigA (sigSpec d,(fs,fo),sigSpec c) A
isRestr (inGammaSpec d) fv A
(V(xl.sl) ::(inGammaSpec d).

let (x2,s2) = fv (xl.sl)
in
inGammaSpec c (x2,s2) A (s2 = fs si)) A

(Veq ::(inSet (ESpec d)).
inSet (thmsDerivable (ESpec c))

(transEq fs fo fv (sigSpec c) (gammaSpec c) eq))
in
SA)

18

This approach is clearly not feasible, as it is impossible to construct the set that contains
all the theorems derivable from a given set of axioms. In fact, it is generally undecidable
whether a given formula is a consequence of a collection of axioms.

Based on our limited experience, however, we believe that in practice a user is capa-
ble of ensuring that the mapping preserves theorems. The specification morphisms used
to refine specifications in practice tend to introduce new constraints without significant
renaming or significant omissions (i.e., E-axioms tend to be translated to E'-axioms). Fur-
thermore, for more complicated translations, a user could prove the necessary preservations
separately using the HOL theorem prover. Having verified the necessary conditions for the
given specifications, the user could then introduce a HOL definition that provides a sufficient
approximation to the set thmsDerivable(ESpec c), namely a set that contains precisely the
(finite number of) verified axiom translations. Although such a process is not completely
automated, it does allow a user to verify the validity of the translation and to generate
assured specifications and refinements.

Once specification arrows have been defined, we introduced a function sigASpecA to
extract the signature arrow from a specification arrow.

sigASpecA.DEF

I-de/ sigASpecA =
(let sAsA (d,(fs,fo,fv),c) = sigSpec d,(fs,fo),sigSpec c in sAsA)

The identity arrow of the object (E, E) in the category Spec is the identity arrow of the
object E in the category Sig, and composition in Spec is defined in the same way as in the
category Sig:

specId_DEF
hdef Vsp.

specld sp =
(let (fs.fo) = mid (sigld (sigSpec sp))
and f v = (Ax :: (inGammaSpec sp). x)

in
sp,(fs,fo,fv),sp)

specOo_DEF

l-de/ specOo =
(Am.
An :: (cpsl specA m).

let (fs.fo) = mid (sigOo (sigASpecA m) (sigASpecA n))
and fv =

(Ax :: (inGammaSpec (dorn n)). (specMFv m o specMFv n) x)
in
dom n,(fs,fo,fv),cod m)

specCat_REP \~def specCat = ((Ax. T),specA,specld,specOo)

Finally, the tuple specCat could be proved to represent a category by proving the follow-
ing goal.

val goal = ([], —'isCat specCat'—);

19

6 Summary and Future Work
Throughout this report, we have identified many of the categories and constructs underlying
algebraic specifications and their interpretations. Furthermore, we have formulated them in
higher-order logic and (in most cases) verified the correctness of our formulation.

The purpose of computer-assisted reasoning is to provide to help nonexperts in a given
domain to nonetheless have confidence in their analysis. In this work, we have not uncovered
new uses of category theory or proved new theorems about category theory. Instead, we
have embedded category theory in a form that nonexperts can use in the future to construct
assured specifications and ultimately assured code. The objective of our formulation of
category theory in HOL is to fully explicate the underlying principles of construction that

algebraic specifications provide.
At present, this work remains incomplete. As discussed in Section 5, verifying that a

specification morphism is valid introduces additional proof obligations for the user. We have
not yet investigated the various mechanisms for integrating these obligations into the system.
We would like to better understand the trade-offs involved and how well these mechanisms

work in practice.
In addition, we have not yet implemented the categorical mechanisms that underlie the

composition of specifications or refinements of specifications. This type of composition and
the notions of refinement rely on categorical pushouts (or, more generally, cohmits), which
provide a canonical way to compose specifications. Intuiviely, a specification morphism /
from A to B indicates how B can be viewed as adding additional constraints to A. The
existence of pushouts in the category Spec assures that whenever a specification A can be
further constrained by two different specifications B and C (via morphisms / and g), that
there is a canonical specification D that captures precisely the additional constraints imposed
by both B and C. Given such specification morphisms / : A -+ B and g : A -+ C, the
pushout can be constructed algorithmically, and hence we do not anticipate any significant
difficulties formulating pushouts in HOL.

References
[1] J. A. Goguen, J.W. Thatcher, and E.G. Wagner. An initial algebra approach to the

specification, correctness and implementation of abstract data types. In R.T. Yeh,
editor, Current Trends in Programming Methodology, Volume IV, pages 80-149. Prentice

Hall, 1978.

[2] M.J.C. Gordon. A Proof Generating System for Higher-Order Logic. In G. Birtwistle
and P. A. Subramanyam, editors, VLSI specification, verification and synthesis. Kluwer,

1987.

[3] Kestrel Institute, 3260 Hillview Ave, Palo Alto,'CA. Specware Language Manual, 1.02

edition, June 1995.

20

[4] J. Linn. Privacy Enhancement for Internet Electronic Mail: Part I: Message Encryption
and Authentication Procedures. RFC 1421, DEC, February 1993. ftp: ds.internic.net.

[5] Lockwood Morris. Interim Partial Description of a Representation for Categories in
HOL. Communicated through private channel, 1998.

[6] Benjamin C. Pierce. Basic Category Theory for Computer Scientists. The MIT Press,
Cambridge, Massachusetts, 1991.

[7] Sten Agerholm. Experiments in formalizing basic category theory in higher order logic
and set theory. http://www.cs.chalmers.se/ilya/FMC/, 1995.

[8] Dan Zhou. High-Confidence Development of Secure E-mail Systems. PhD thesis, Syra-
cuse University, 1999.

[9] Dan Zhou and Shiu-Kai Chin. Verifying Privacy Enhanced Mail Functions with Higher
Order Logic. Network Threats, DIMACS Series in Discrete Mathematics, 38:11-20,
1998.

[10] Dan Zhou, Joncheng C. Kuo, Susan Older, and Shiu-Kai Chin. Formal Development of
Secure Email. In Proceedings of the 32nd Hawaii International Conference on System
Sciences, January 1999.

21

MISSION
OF

AFRL/INFORMATIONDIRECTORATE (IF)

The advancement and application of information systems science and

technology for aerospace command and control and its transition to air,

space, and ground systems to meet customer needs in the areas of Global

Awareness, Dynamic Planning and Execution, and Global Information

Exchange is the focus of this AFRL organization. The directorate's areas

of investigation include a broad spectrum of information and fusion,

communication, collaborative environment and modeling and simulation,

defensive information warfare, and intelligent information systems

technologies.

